Supplementary Material

A Hybrid Approach of Data Envelopment Analysis Based Grey Relational Analysis: A Study on Egg Yield

Hande Küçükönder¹, Pınar Çelebi Demirarslan^{1,*}, Aykut Burgut² and Mustafa Boğa³

¹Faculty of Economics and Administrative Sciences, Bartin University, Ağdacı Campus 74000, Bartın, Turkey

²Faculty of Agriculture, Çukurova University, Yüreğir 01230, Adana, Turkey ³Bor Vocational School, Niğde University, Bor 51700, Niğde, Turkey

Corresponding author: pdemirarslan@bartin.edu.tr
 0030-9923/2019/0003-0903 \$ 9.00/0
 Copyright 2019 Zoological Society of Pakistan

The steps of the ARAS method

The steps of the Additive Ratio Assessment (ARAS) method presented as a new MCDM method by Turskis and Zavadskas are given below (Zavadskas and Turskis, 2010).

Step 1 - Creating the decision matrix

The X_0 optimal solution vector consisting of optimal values for each criterion was added as a line to the $D = [x_{ij}]$ must decision matrix with *m* alternatives and *n* criteria.

Where, $X_0 = (x_{0j})$ is the optimal value in the *j*th criterion (*j* = 1, ..., *n*).

Step 2 - Normalized decision matrix

The normalization process depends on whether the criterion is a benefit or cost criterion. The values in the cost criterion were converted to the benefit criterion form by taking its inversion according to the multiplication. $\overline{X} = [\overline{x}_{ij}]_{(m+1)xn}$ normalized the decision matrix was calculated by means of the following equations.

$$\bar{x}_{ij} = \frac{x_{ij}}{\sum_{i=1}^{m} x_{ij}}, \text{ when } j^{th} \text{ criterion is benefit criterion } \dots \dots (25)$$
$$\bar{x}_{ij} = \frac{\frac{1}{x_{ij}}}{\sum_{i=1}^{m} \frac{1}{x_{ij}}}, \text{ when } j^{th} \text{ criterion is cost criterion } \dots \dots (26)$$

Step 3 - Weighted normalized decision matrix Normalized values were obtained by multiplying by the w_j criterion weights in the form of $\hat{X} = [\hat{x}_{ij}]_{(m+1)xn}$ weighted normalized decision matrix $\hat{x}_{ij} = \overline{x}_{ij} w_j$.

Step 4 - Calculation of optimality function values

In this step, the alternatives were evaluated by calculating the S_i optimality function value of each alternative. S_i value the K_i benefit ratios of each alternative were calculated by dividing to the S_0 optimal function value. Then, K_i benefit ratios were ranked from small to large, and their alternatives are evaluated.

$$S_{i} = \sum_{j=1} \hat{x}_{ij}, i = 0, 1, ..., m(27)$$
$$K_{i} = \frac{S_{i}}{S_{0}}, i = 0, 1, ..., m(28)$$

MOORA method

Below are explanations of the MOORA-Reference Point (Multi-Objective Optimization on the basis of Ratio Analysis-Reference Point) method with significance coefficients (weighted) used in the study and the steps of the process (Şimşek *et al.*, 2015; Brauers and Zavadskas, 2006).

Step 1 – Normalization

$$x_{ij}^* = \frac{x_{ij}}{\sqrt{\sum_{i=1}^m x_{ij}^2}} \dots \dots (29)$$

Step 2 – Weighted Tchebycheff min-max metric

$$\min_{i} \left\{ \max_{j} (|w_{j}r_{j} - w_{j}x_{ij}^{*}|) \right\} \dots \dots (30)$$

Where, r_j is reference point for the jth criterion and when the jth criterion is the benefit criterion, the maximum value

H. Kucukonder et al.

is taken as the reference point, and when it is the cost criterion, then the minimum value is taken as the reference point.

Step 3 – Ranking

The alternative with the smallest value is the best alternate.